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The important thing is not to stop questioning 
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ABSTRACT 

 

This scientific research explores the nature and properties of a lensed gravitational wave 
signal resulting from compact binary coalescence of merging binary black hole system. In 
the first part of the research, we focus on the theoretical analysis performed over the past 
years based on the Takahashi-Nakamura formalism to analytically express the amplification 
obtained in the source signal due to its encounter with a compact isolated astrophysical 
lens object. This research presents the results on both wave optics and geometric optics 
limit and produces an ideal transition point between the two limits for a varying 
dimensionless frequency of the source signal. We observe that for any value of the 
dimensionless frequency greater than unity, both the limits hold well and produce similar 
amount of magnification. In the second part of the research, we produce a sine-gaussian 
source model and analyze how the source properties are affected by the presence of a 
point-mass lens model on its way to the observer which results in a strong lensing 
phenomenon. We see no correlation between the frequency of the sine-gaussian wave and 
the lensing parameters, but solid correlation between the amplitude of the signal, the 
source position offset with the lens and lens mass. In the final part of the research, we 
model a binary black hole merger GW signal and observe how a point-mass lens model 
would affect the nature and physical parameters of the merging binary black hole system. 
We see strong correlation between the luminosity distance and lensing parameters. When 
we create a strongly lensed signal and perform parameter estimation using nested 
sampling by assuming that there is no lensing, we simulate how LIGO/VIRGO samples any 
incoming GW signal. We can clearly see that the resulting posteriors of source parameters 
have huge offset from the originally injected values because of ignoring the lensing effect 
on the input side. This leads to a conclusion that for GW signals which have higher 
probability of strong lensing, the interferometers should consider lensing effects while 
sampling any incoming gravitational wave signal during its observing runs.  
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Chapter 1 

Introduction 

Albert Einstein’s publication on Theory of General Relativity (Einstein 1915) has made it 

possible to describe many astrophysical phenomena that couldn’t be explained by classical 

Newtonian physics. One such phenomena that was successfully described by Einstein’s 

theory of relativity was gravitational lensing. Einstein’s theory describes how the 

concentration of mass into compact objects distorts the space that surrounds them. This 

theory also successfully explained the deflection of light mechanism in 1919. Null geodesics 

are obeyed by light rays in space time curvature and the deflection occurs by the 

gravitational potential of the massive lens object in-between the source and the observer. 

Gravitational lensing is one of the most interesting phenomena in the regime of 

gravitational wave (further referred as GW) research and astrophysics. This phenomena 

occurs when light emitted by any distant sources like galaxies, stars, neutron stars travel 

along the space and reach the observer (interferometers, in our case), but on its way, light 

rays from the source gets distorted and changes direction (bending of light occurs) because 

of its encounter with any massive astronomical objects like galactic halos, black holes etc. 

(Pacsyoski 1986) This bending of light causes momentary brighter appearance of the source 

by a certain magnitude because it is amplified by the gravitational pull of the lensing object. 

(Liao 2019, Takahashi & Nakamura 2003, T.R. 2006) 

The gravitational lensing phenomena majorly depends on the properties of the lens that 

bend the light from the source. (Paolis 2002) Several thousand gravitational lensing of 

astronomical entities have been observed in the past century ever since 1919. (Bozza 2012, 

Diego 2019) With the recent Nobel prize winning detection of gravitational waves in 2015, 

the advancement of LIGO-VIRGO detectors (aLIGO, AdVIRGO) (Aasi 2015, Abbott 2019) and 

upcoming new detectors like Einstein Telescope and space bound interferometry detectors 

like Laser Interferometer Space Antenna (LISA), the number of such revolutionary 

gravitational lensing events in the regime of gravitational wave signal is expected to 

drastically increase.  

Inspirals and binary mergers of compact objects such as black holes have a promising future 

not only in the field of gravitational waves but also in gravitational lensing. (Meena 2019, 

Nakamura 1997) When the gravitational waves from compact binary coalescence events 

pass through massive objects that can act as gravitational lens, then these gravitational 

waves will also bend, and lensing occurs just like it happens with light from a distant source. 

Gravitational lensing is usually treated as a phenomenon that occurs in geometric optics 

approximation limit. (Nakamura & Deguchi 1999) In case of gravitational waves being 

lensed, the wavelength is long and geometrics optics limit might not always prove to be 

valid at longer wavelengths. (Paolis 2001) If the wavelength becomes larger than the 

Schwarzschild radius of the lens mass ML, then diffraction effect comes into play and the 

magnification in the amplitude of the gravitational wave due to lensing becomes small. The 



9  

ratio of ML and λ is very important because this ratio determines the effect due to 

diffraction on lensing. This can be explained using the double slit experiment with the slit 

width approximately equal to Einstein’s radius that is,  

𝜉𝑠~(𝑀𝐿𝐷)
1
2 (1.1) 

where D is the distance between the slit and the screen of display. When waves of certain 

wavelength λ passes through this slit, it creates an interference pattern on the screen. 

Therefore, it is valid to say that the diffraction effect is important for  

𝑀𝐿 ≤  108𝑀⨀ (
𝑓

mHz
)

−1

(1.2) 

where f is the frequency of the gravitational wave under consideration. The focused region 

by the gravitational lensing will have a relatively large area because of the diffraction effect 

and thus, the lensing probability will increase. (Ruffa 1999) The gravitational waves that are 

produced by compact binary coalescence events like binary black hole merger events are 

coherent. So, the interference effects should be considered important. Hence, we can 

expect that the wave effect will produce more information about the lensing process, the 

lens and the source under study. 

1.1 Why Binary Black Hole mergers? 

This research involves considering wave effects and geometric optics limit approximation in 

gravitational lensing of gravitational wave events. Gravitational waves are disruptions or 

ripples in space time curvature caused by massive objects creating energetic processes in 

the Universe. (Thorne 1983) The theoretical calculations by Einstein stated that these 

waves are caused by such massive objects and they travel in all directions at the speed of 

light carrying interesting information about the object, its origin and many other facts 

about the nature of gravity. On 14-September-2015, all the theoretical and mathematical 

modelling by Einstein was proved experimentally by the Nobel Prize winning discovery of 

gravitational waves from two merging binary black hole system that was approximately 1 

billion light years away from Earth. (Abbott et al. 2016, McIsaac 2019) 

In this research, we primarily consider compact binary coalescence from binary black hole 

merger system as our primary target source of study for gravitational lensing effects. This is 

because inspirals and massive compact binary mergers are one of the most favorable 

gravitational wave sources (Singer 2019) as there are several examples of such detections 

in low mass category and in future, LISA and Einstein Telescope promises to detect 

gravitational waves from supermassive black hole mergers (in the mass range 105 – 109 𝑀⨀) 

(Rhook 2005) and intermediate mass black hole mergers (in the mass range 102 – 105 𝑀⨀) 

(Zhao 2005, Miller 2009). LISA will consider SMBH mergers as its primary source and detect 

them with high signal-to-noise-ratio (of approximately 103). The major hosts of 

supermassive black holes are the center of any galaxy. Thus, the search for SMBH mergers 

will mostly yield results at high redshifts when the central SMBH in any two distant galaxies 

tend to merge producing gravitational waves. (Futamase 1999) As the redshift will be high, 

there is more probability of lensing to occur when the gravitational wave travels towards 

the observer (i.e., earth or LISA). Hence, we can expect more gravitationally lensed 
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gravitational waves from such events in near future. Thus, binary black hole mergers in 

various mass ranges are encouraging candidates for this type of research on gravitational 

lensing due to gravitational wave events.  

In strong gravitational lensing phenomenon, multi-lensing of the same event could be 

observed with a specific and viable time delays between each of them as we observe them 

in earth or space-based interferometers. The time delay is the key feature in strong lensing 

phenomena. (Haris 2018) This will be explained by the lens equation that describes the 

magnification produced due to the lensing phenomenon for a particular source offset and 

frequency of the GW radiation. The coalescing binary black hole mergers from Advanced 

LIGO and VIRGO are characterized by certain parameter sets like masses of each black hole, 

their spins, sky location, orientation and inclination with the observer etc. All these 

parameters may or may not be affected by the intervening massive object that act as the 

gravitational lens.  

1.2 Gravitational Lens Models 

Here we start by studying two simple gravitational lens models: (Takahashi and Nakamura 

2003) 

1. The point mass lens model 

2. The SIS (Singular Isothermal Sphere) lens model 

We start the study by calculating the amplification in the waveform due to gravitational 

lensing by these two basic lens models. We plot the magnitude and phase of the 

magnification/amplification factor. All the relevant mathematical and theoretical 

frameworks attached to the wave optics of these two gravitational lens models are 

discussed in this study. Furthermore, we apply one of these lens models (eg., the point 

mass lens model) to a simulated sine gaussian signal and a modelled gravitational wave 

signal from binary black hole merger system and estimate the lensing and signal 

parameters using nested sampling algorithm. We repeat the same study in wave optics and 

geometric optics limit approximation.  

The point mass lens model assumes compact objects with high density like black holes as 

the gravitational lens object. This is the most basic model of lens in gravitational lensing 

process. The singular isothermal sphere (SIS) lens is the model which assumes cold dark 

matter halos in galaxies, clusters of galaxies and/or stars as its lens object. Both the lens 

models assume different properties and follow different lensing effects in wave optics and 

geometric optics approximation. They are studied in detail throughout this research.  

1.3 Wave Optics and Geometric Optics limit 

Gravitational lensing effects predominantly depends on two main lensing parameters: 

a. The mass of the gravitational lens object (referred to as M or ML in the remainder of the 

study) 

b. The wavelength of the radiation (referred to as λ in the remainder of the study) 
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The lens mass ML is in units of distance here, because it is multiplied by a factor (𝐺 𝑐2⁄ ), 

which is the ratio of the gravitational constant and the square of the speed of light. If the 

wavelength of the radiation due to the propagation of gravitational wave λ is much greater 

than the lens mass (which is scaled to the unit of distance), 𝑀 ≪  𝜆, we can clearly say that 

the lensing could be appropriately described using wave optics limit approximation. If the 

wavelength is much smaller than the lens mass scale, then the lensed wave will behave in 

geometric optics limit approximation as described by the famous Fermat’s principle. (T. R. 

2006) 

Wave optics deals with a mathematical integral called diffraction integral which will in turn 

represent the amplification in the amplitude of a wave that is magnified by lensing. 

Conventionally, gravitational lensing of light from astrophysical objects were treated only in 

the geometric optics limit because the wavelength of the light from those massive sources 

were typically smaller than the mass (distance-scaled) of the astrophysical objects under 

study. But when we focus on gravitational lensing of gravitational waves, the wavelength 

becomes huge wherein geometric optics limit no longer becomes a valid approximation 

because the diffraction effect comes into play. This research will focus both on cases where 

geometric optics limit comes into play and wave optics limit becomes valid, so that the 

gravitational lensing of gravitational waves could be studied for various mass ranges.  

1.4 Organization of the scientific report 

This scientific report is structured and organized as follows: 

In this work, § 2 presents a theoretical framework of wave optics limit in gravitational 

lensing using thin lens approximation and geometric optics limit approximation for the two 

lens models under study. The lens equation for point mass lens model and singular 

isothermal sphere lens model is derived in the upcoming sections which determines the 

amplification produced by the particular lens model that varies with different source offset 

position and dimensionless frequencies in both geometric and wave optics limit. Several 

plots and figures explaining the oscillations produced by the lens equation is also 

presented. Transition between wave and geometric optics limit is also discussed in the 

same section. 

Furthermore, § 3 explains the computational tools, statistical and numerical methods 

involved in the remainder of the study. It explains how nested sampling algorithm can be 

used in estimating several lensing and gravitational wave parameters involved in the 

lensing phenomena. A summary of how bilby is used as a major platform in producing 

source signals and recovering them is briefed in the same section. Generating GW signals 

using LALSuite python package is summarized in a sub-section. Basics of parameter 

estimation including defining likelihood, priors and using the interferometers in bilby is 

summarized as a sub-section in section 3.  

In § 4, a sine gaussian source signal is modelled and several different properties of the 

signal is discussed and elaborated. Lensing parameters from point mass lens model is 

inserted into this sine gaussian model and the lensed signal is recovered estimating both 

the lensing and source signal parameters. Several results and analysis are presented in the 
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following section. As a sub-section, a binary black hole merger signal is simulated and 

modelled with different set of intrinsic and extrinsic parameters. This signal is then passed 

with point mass lens model parameters and a gravitationally lensed waveform is obtained. 

Nested sampling is done on the lensed signal and several lensing and gravitational wave 

parameters are estimated. 

The results from modelled lensed sine gaussian and lensed binary black hole merger signal 

is produced in § 5. Several interpretations based on varying each parameter is briefed in the 

same section. Analyzing the black hole parameters from a lensed waveform while 

recovering them as they were not lensed help us determine the offset in parameter 

estimation if the signal was lensed but our recovery methods don’t include lensing 

parameters in the estimation. These analysis and further discussion on them are 

summarized in § 5. The summary about strongly lensed and weakly lensed signals is 

discussed. The results are discussed both in wave optics and geometric optics limit and a 

smooth transition point between the two limits is also discussed in the results and analysis 

section.  

A summary of all the results in existing literature and the novel analysis in this work is 

presented in § 6. The same section sets the conclusion for this work, scope of this work and 

possible future works and extension for this study. References are adhered in alphabetical 

order after the summary chapter. Appendix A presents the derivation maximum value of 

amplification factor for point mass lens model. Appendix B presents the derivation 

maximum value of amplification factor for SIS lens model. Appendix C presents a summary 

about the real-world equivalent of the source position parameter.  
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Chapter 2  

Theoretical Framework 

2.1 Wave Optics in Gravitational Lensing 

In this sub-section, we briefly summarize the wave optics limit in gravitational lensing. 

(Schneider 1992, Luo 2015) We need a metric to represent the gravitational waves that 

propagates under the potential of a gravitational lens object. The metric is given as follows: 

𝑑𝑠2 =  −1(1 + 2𝑈)𝑑𝑡2 + (1 − 2𝑈)𝑑𝒓2 ≡  𝑔𝜇𝜈
(𝐵)

𝑑𝑥𝜇𝑑𝑥𝜈 (2.1) 

where U(r) at any position vector r is the gravitational potential of the massive and compact 

object that can act as the gravitational lens. Here r = (r,ϴ,φ) is the corresponding spherical 

coordinates. This U(r) value is much lesser than unity (<< 1). The background metric tensor 

can be represented and related to the linear perturbation of the gravitational wave as 

follows: 

𝑔𝜇𝜈 =  𝑔𝜇𝜈
(𝐵)

+  ℎ𝜇𝜈 (2.2) 

It is practical to say that the gravitational wave under study will interact only with a limited 

region of space around the lens object when compared to large scale of distances between 

the source, lens and observer in all combinations. According to transverse-traceless Lorentz 

gauge condition (Einstein 1915) where ℎ𝜇;𝜈
𝜈 = 0 and ℎ𝜇

𝜇
= 0, we can say that, 

ℎ𝜇𝜈;𝛼
;𝛼 + 2𝑅𝛼𝜇𝜈𝛽

(𝐵)
ℎ𝛼𝛽 = 0 (2.3) 

Here the semicolon (;) operator is the covariant derivative with respect to the background 

metric tensor and the second term is twice the background Riemann tensor. When the 

wavelength of the radiation is smaller than the curvature radius of the background space-

time, then the first term in (2.3) becomes zero.  

By using the Eikonal approximation, a gravitational wave can be expressed in terms of the 

linear perturbation as follows: 

ℎ𝜇𝜈 =  𝜙𝑒𝜇𝜈 (2.4) 

where eµν is the polarization tensor of the gravitational wave while φ is the scalar field. In 

gravitational lensing, we consider the polarization tensor as a constant because the change 

in the tensor is very small in our observation scenarios. Hence, the gravitational wave can 

be treated as a scalar wave represented by φ. 
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Considering the gravitational wave as a monochromatic wave travelling from a point 

source, we can represent its complex amplitude using the solution to the Klein-Gordon 

equation for curved spacetimes. (Asenio 2017) 

𝜙(𝒓, 𝑡) =  
𝐴

|𝒓|
𝐹(𝒓)𝑒−𝑖(𝜔𝑡−𝒌.𝒓) (2.5) 

where A is a constant of proportionality, F(r) is the amplification factor due to lensing, 

ω=2πf is the natural angular frequency of the GW, f is the normal frequency of the wave 

while k is the vector that represents the wave number.  

 

Figure 2.1: Gravitational lens geometry for the gravitational wave source (vectors shown in 
red), gravitational lens object (vectors shown in green) and the observer (ground or space-
based interferometers). Path of gravitationally lensed signal is shown in blue and the sky 
position from where we obtain the GW image* on the source plane is shown in the maroon 
line. This interpretation is based on thin lens approximation (Matsunaga 2006). The angles 
shown here are vastly magnified compared to reality. 

It is fair to write the amplification factor due to lensing as, 

𝐹(𝑓) =  
𝜙�̃�(𝑓)

�̃�(𝑓)
(2.6) 

*Note: When we refer to images obtained from gravitational lensing of GW in any part of this study, we mean the sound 
signal from the GW from a different sky position on the source plane than the original source position because in case of 
GW, we do not obtain any images. 
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where 𝜙�̃�(𝑓) is the lensed wave amplitude of the GW and �̃�(𝑓) is the unlensed 

gravitational wave amplitude when gravitational potential, U=0. In Figure 2.1, the 

configuration of gravitational lensing phenomenon for a source, lens and observer 

separated by the distances Dds, Dd and Ds respectively is shown. η is the source offset vector 

(a position vector) that represents the position vector of the massive gravitational wave 

source in the source plane. ξ is the impact parameter (a position vector) that is configured 

to the lens plane. This parameter is related to the Einstein angle using the relation 𝜉𝜊 =

 𝜃𝐸𝐷𝑑 where ϴE(or simply ϴ, as in Figure 2.1) is the Einstein angle. Here, we use thin lens 

approximation wherein the lens object is represented by its surface mass density ∑(ξ) and 

based on the assumption that the gravitational waves are scattered over a lens plane of 

thin thickness. Further, using mathematical formulas and relations described in the 

scientific literature (Abramowitz & Stegun 1972, Matsunaga 2006), the amplification factor 

F(f) at the interferometer can be described as follows: 

𝐹(𝑓) =  
𝐷𝑠𝜉𝜊

2

𝐷𝑑𝐷𝑑𝑠

𝑓

𝑖
∫ 𝑑2𝒙 exp{2𝜋𝑖𝑓𝑡𝑑(𝒙, 𝒚)} (2.7) 

where x=ξ/ξ0 and y=ηDd/ξ0Ds is the scaled versions of η and ξ and are dimensionless. Td is 

the time of arrival of the gravitational wave at the observer from the source after lensing. 

The value of F is normalized at U=0 which is equivalent to a scenario where the limit tends 

to no lens and thus |F|=1. The time delay function is described as follows: 

𝑡𝑑(𝒙, 𝒚) =  
1

2
|𝒙 − 𝒚|2 − 𝜓(𝒙) + 𝜙𝑚(𝒚) (2.8) 

Here, 𝜓(𝒙) =  ∫ 𝑑𝑧𝑈
∞

−∞
 is the gravitational potential integrated over two-dimensional 

space. We know that, due to lensing, the two images will have a certain time difference in 

reaching the observer which is described by the time delay function as described above. 

The integral in equation (2.7) integrates over all possible paths and the two images 

represent the time delay between different possible paths (through the lens plane) that the 

wave could take. The function φm that depends on the source position is inserted into this 

equation to set the minimum time delay between these images to zero value. If we assume 

the lens model to be symmetric, then we get the following generalization case for the 

amplification factor of the GW that is lensed,  

                                 𝐹𝑤(𝑤, 𝑦) = −𝑤 exp (
1

2
𝑤𝑦2) ∫ 𝑥𝐽0

∞

0

(𝑤𝑥𝑦) exp {𝑖𝑤 [
1

2
𝑥2 − 𝜓(𝑥) + 𝜙𝑚(𝑦)]} dx       (2.9)  

where J0(wxy) is the Bessel function of first order which depends on the product of w, x and 

y. In this final equation, we assume that the gravitational potential will depend only on x 

which is equivalent to the absolute value of x. Similarly, the φm function depends only on y 

which is equivalent to the magnitude of y. In the above mentioned equation, the important 

parameter w is the dimensionless frequency parameter which is equal to 8πMLf where ML(L 

subscript stand for the lens) is the redshift mass of the lens object that is equal to (1+zL)M. 

In this study, we predominantly consider zL=0 for galactic and other compact object sources 

that are nearby making ML~M. We can clearly notice that w is directly proportional to the 
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ratio of lens mass and wavelength of the radiation (ML/λ). Thus, this quantity w is that 

lensing parameter which describes which type of optics limit is applicable to the lensing 

process of the gravitational wave under study: wave optics or geometric optics limit. Hence, 

the amplification factor due to gravitational lensing is heavily dependent on the 

dimensionless frequency w and source offset factor y. 

2.1.1 Geometric Optics Approximation 

In this sub-section, we will brief about small wavelength limit in the wave optics wherein w 

>> 1 which will approximate to conventional geometric optics limit evaluation in 

gravitational lensing phenomena. In this limit, frequency of the GW radiation is extremely 

higher than the inverse of the time delay between lensed and unlensed images i.e., f >> td
-1. 

According to the Fermat’s principle, the stationary points on the time delay function td(x,y) 

contributes to the integral in the final wave optics equation. This renders the following 

amplification factor equation in the geometric optics limit. 

𝐹𝑔(𝑤, 𝑦) =  ∑|𝜇(𝑥𝑗)|
1
2 exp (𝑖𝑤𝑡𝑑(𝑥𝑗 , 𝑦) − 𝑖

𝑛𝑗

2
𝜋)

𝑗

(2.10) 

where the magnification of any arbitrary j-th image is µ(xj) = 1/det(∂y/∂xj) and nj = 0, 1, 2,… 

For the case of lensing through multiple images in the geometric optics limit, the 

summation in this final expression means that the observed lensed GW is represented by 

the superposition of several waves with amplitude described by the factor |𝜇(𝑥𝑗)|1/2 and 

phase expressed as 𝑤𝑡𝑑(𝑥𝑗 , 𝑦) − 𝑛𝑗𝜋/2.  

2.2 Point Mass Lens 

When the massive lens object that takes its position in-between the GW source and the 

observer is a black hole or a compact isolated star within a galaxy, then its mass distribution 

is point-like and it can be regarded as a point mass gravitational lens model.  

In general, the deflection potential of the GW is given by 

𝜓(𝒙) = 4𝐺 
𝐷𝑑𝐷𝑑𝑠

𝐷𝑠
 ∫ 𝑑2Σ(𝑠) log|𝒙 − 𝒔|

∞

−∞

(2.11) 

where the surface mass density for any mass model in lens plane is given by 

Σ(𝒙) =  ∫ 𝑑𝑧 𝜌(𝒙, 𝑧)
∞

−∞

(2.12) 

Where ρ(x,z) is the mass density profile of the lens model under consideration which is 

directly related to the Newtonian potential as ∇2𝑈 = 4𝜋𝐺𝜌. This is a mathematical proof 

that the amplification factor for any lens model depends on mass density distribution and 

gravitational deflection potential. 

The surface mass density for such a point-mass distribution of matter is ∑(x) = Mδ(2)(ξ). For 



17  

point mass lens model, we write ρ(x,z) = Mδ(2)(ξ)δ(1)(z) where M is the mass of the lens 

object described by the point mass distribution model. For such mass distributions, the 

Einstein angle can be described as follows: 

                     𝜃𝐸 =  √
4𝐺𝑀𝐷𝑑𝑠

𝐷𝑑𝐷𝑠
 ≈ 3 𝑥10−6 (

𝑀

𝑀⨀
)

1
2

(

𝐷𝑑𝐷𝑠

𝐷𝑑𝑠

1 Gpc
)

−1
2

arcsec                     (2.13) 

Gravitational deflection potential for this mass distribution model is given by ψ(x) = log x. 

Substituting all these expressions on the analytical formula for amplification factor of any 

gravitational lens model of lensing phenomena in a GW radiation gives us the following lens 

equation for the point mass lens model: 

𝐹𝑤(𝑤, 𝑦) = exp [
𝑖

2
𝑤(𝑦2 + log (

𝑤

2
)]  exp (

𝜋

4
𝑤)  Γ (1 −

𝑖

2
𝑤)  𝐹1 1 (1 −

𝑖

2
𝑤, 1; −

𝑖

2
𝑤𝑦2)

                                                                                                                                                         (2.14)
 

where 1F1(a,b;c) is the confluent hypergeometric function of the first kind. Also known as 

Kummer’s function which is in turn a solution of Kummer’s differential equation. Bessel 

equations can be easily solved using hypergeometric functions and thus, the generic lens 

equation, after solving for point mass lens model yields a function with confluent 

hypergeometric function. (Magnus 1996) We know that, Γ is the gamma function which 

extends from normal factorials to complex numbers except non-positive integers. The 

maximum magnification of source image can be achieved when the source is in line with 

the observer i.e., when the source offset factor y=0. The above-mentioned equation can be 

solved for y=0, which after mathematical and analytical evaluations yield 

𝐹𝑚𝑎𝑥(𝑤, 𝑦 = 0) =  √
𝜋𝑤

1 − exp(−𝜋𝑤)
(2.15) 

When we consider the approximation based on geometric optics limit, the point mass lens 

model will consist of two images in this limit. Solution to equation (2.15) in Appendix A. 

Thus, the lens equation will yield the following solutions: 

𝐹𝑔(𝑤, 𝑦) = |𝜇+|
1

2⁄ − i|𝜇−|
1

2⁄  exp {𝑖𝑤 [
𝑦√𝑦2 + 4

2
+ 𝑙𝑛 (

√𝑦2 + 4 + 𝑦

√𝑦2 + 4 − 𝑦
)]} (2.16) 

where amplification of each of the two images (GW sound signal) is given by 

𝜇± =  
1

2
±

𝑦2 + 2

2𝑦√𝑦2 + 4
(2.17) 

From the solution to the classical lens equation, x+y-∇ψ(x)=0, we can say that we obtain 

image position 𝒙± = 𝒚/2 + √𝒚2 + 4/2. Thus, we get two images in all these cases. 
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2.3 Singular Isothermal Sphere Lens 

Modelling a cold dark matter halo can be done by studying the second model under this 

research: singular isothermal sphere (SIS) lens model.  

The density profile for the case of singular isothermal sphere is described as 

𝜌(𝒙, 𝑧) =  
𝜎𝑣

2

2𝜋𝐺(|𝜉𝜊𝒙|2 +  𝑧2)
(2.18) 

where σv is the dispersion velocity described by the singular isothermal sphere mass 

distribution. The surface mass density for the SIS model is defined as 

Σ(𝒙) =  
𝜎𝑣

2

2𝐺𝜉𝜊𝑥
(2.19) 

While the gravitational deflection potential ψ(x) is equal to x. All the equations enable us to 

deduce the Einstein angle for the SIS lens model. This is given by 

𝜃𝐸 = 4𝜋𝜎𝑣
2

𝐷𝑑𝑠

𝐷𝑠
 ≈ 3 𝑥 10−5 (

𝜎𝑣

1
km

s

)

2

(
𝐷𝑑𝑠

𝐷𝑠
) arcsec (2.20) 

Substituting all these expressions on the analytical formula for amplification factor of any 

gravitational lens model of lensing phenomena in a GW radiation gives us the following lens 

equation for the SIS lens model: 

𝐹𝑤(𝑤, 𝑦) = exp [
𝑖

2
𝑤𝑦2] ∑ {2𝑤 exp (𝑖

3𝜋

2
)}

𝑛
2

 
Γ (1 +

𝑛
2)

𝑛!
 𝐹1 1 (1 +

𝑛

2
, 1; −

𝑖

2
𝑤𝑦2)

∞

𝑛=0

  

 (2.21) 

The maximum amplification that can be achieved by gravitational lensing of gravitational 

waves when the lens object is described by a SIS mass distribution model will be obtained 

by solving this equation for a source offset value of zero, i.e., y=0. This gives 

𝐹𝑚𝑎𝑥(𝑤, 𝑦 = 0) = |1 +
1

2
(1 − 𝑖) exp (−

1

2
𝑤) √𝜋𝑤 [1 + Erf (

√𝑤

2
(1 − 𝑖))]| (2.22) 

where Erf is a complex function of the complex variable under parenthesis, commonly 

known as error function. Derivation of equation (2.22) in Appendix B. 

As the final mathematical analysis of this sub-section, let us consider the 

magnification/amplification factor of SIS lens model in the regime of geometric optics limit 

approximation. For the case of an SIS lens model, two images are formed for y<1 at 

minimum and saddle points while one stationary image point is formed for y≥1. This can be 

described by the following piece-wise defined function. 
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𝐹𝑔(𝑤, 𝑦) =  {
|𝜇+|

1
2⁄ − i|𝜇−|

1
2⁄  exp{𝑖2𝑤𝑦}   ∇  y ≤ 1

|𝜇+|
1

2⁄                                               ∇  y ≥ 1 
(2.23) 

where amplification of each of the two image is given by 

𝜇± =  ±1 +
1

𝑦
(2.24) 

As we see from the final equation, for y values less than 1, double images are formed while 

for y greater than 1, only one image is formed in the geometric optics limit regime. This SIS 

lens model is quite efficient as it can be used to describe more realistic astrophysical lens 

objects such as galaxies, halos and star clusters. 

 

 

 

 

 

 

Table 2.1: Comparison of lensing parameters for Point-mass and Singular Isothermal Sphere 

A tabulation of the values of φm(y) that makes the minimum time delay function round to 

zero and the value of dimensionless frequency for both the lens models is summarized in 

Table 2.1. These values have been used while computing the magnitude and phase of the 

amplification factor in the upcoming sections. 

2.4 Magnitude of the Amplification Factor 

From the analytic wave equation that we have derived for point mass lens model (2.14) and 

singular isothermal sphere lens model (2.21), we can plot the magnitude or absolute value 

of the amplification factor as a function of the characteristic gravitational wave radiation 

parameter w which is also called the dimensionless frequency as it is proportional  product 

of lens mass (scaled to time – multiplied by a factor of G/𝑐3) and frequency of the GW 

radiation. Figure 2.2 shows the magnitude of amplification factor plotted against the 

dimensionless frequency for a constant value of source offset position y. The same curve is 

plotted for three other values of y. The source position is fixed as 0.1, 0.25, 0.5 and 1.0. 

For w≥1, i.e., when the dimensionless frequency is greater than unity, severe oscillation is 

observed in the absolute value of amplification factor due to lensing of the gravitational 

wave. This oscillation occurs as a result of interference in the waves formed between the 

multiple images due to gravitational lensing as described by the wave optics approximation. 

Lens Model φm(y) w 

Dimensionless Frequency 

Point Mass (xm-y)2/2 8πMf 

Singular 
Isothermal 

Sphere 

y+1/2 2πf(4πσv
2)2 (DdDds/Ds) 
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The amplitude of such oscillatory behavior in the amplification factor for varying w that is 

greater than 1 decrease with increasing value of y from 0.1 to 1.0 which can also be 

observed in the Figure 2.2. 

  

Figure 2.2: Magnitude of the amplification factor of point mass lens model (Left) and 

singular isothermal sphere lens model (Right) with respect to varying values of 

dimensionless frequency (w=8πMLf) for a specific source offset value (i.e., y=0.1, 0.25, 0.5, 

1.0) 

For w≤1, i.e., when the dimensionless frequency is lesser than unity, the magnitude of 

amplification is very small. This can be explained as a consequence of the diffraction effect 

that we discussed earlier. The amplification is less because when w is smaller than unity, 

the wavelength is very large and thus the incoming gravitational wave does not feel the 

existence of the intervening lens object along its path to the observer. When w increases to 

a value greater than 1.0, then the F(w,y=constant) curve slowly converges to geometric 

optics limit.  

The highest magnitude of amplification factor occurs when y=0.1 and w≈10 wherein 

|F(w,y)|≈3.2, i.e., when the source offset is quite low and dimensionless frequency is ten 

times unity, we obtain high magnification of the GW source signal that is three times 

amplified for point mass lens model. 

Figure 2.3 shows the magnitude of amplification factor plotted against the source offset 

position y for a constant value of dimensionless frequency w. The same curve is plotted for 

two other values of w. The dimensionless frequency is fixed as 20, 5 and 1. 

This plot proves that the oscillatory behavior increases for increasing values of 

dimensionless frequency w (from 1 to 20). When the source position y gets closer to zero, 

that is, when the source gets aligned with the gravitational lens object, the amplification 

factor tends to increase and converge at one point for y=0 that is described by the equation 

we derived in the previous sub-sections. Given that the dimensionless frequency is directly 

proportional to the frequency of the gravitational wave under study taking the lens mass 

scale to be a constant value, we can say that, as the frequency of the source signal 

increases oscillatory behavior of F(w=constant,y) function due to interference of lens 
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images comes into play.  

In the same plot, it is also visible that, when the source position y becomes greater than 

unity, damped oscillatory behavior of F(w=constant,y) appears because the wave starts to 

behave in accordance with the geometric optics limit wherein only a single image exists for 

source position y≥1.0.  

  

Figure 2.3: Magnitude of the amplification factor of point mass lens model (Left) and 

singular isothermal sphere lens model (Right) with respect to varying values of source 

offset for specific values of dimensionless frequency (w=8πMLf) (i.e., w=1, 5, 20) 

Another interesting fact to notice is that, the highest magnitude of amplification factor 

occurs when y=0.1 and w≈10 wherein |F(w,y)|≈5.0, i.e., when the source offset is quite low 

and dimensionless frequency is ten times unity, we obtain high magnification of the GW 

source signal that is five times amplified for singular isothermal sphere lens model. This 

magnification value is higher than the one we obtain due to point mass lens model whereas 

we expect this to be vice-versa as the point-mass like lens objects are denser and compact. 

This is a theoretical verification that singular isothermal sphere lens produces higher 

magnitudes of amplification when compared to point mass lens model. In both the lens 

models, when y<1, we see two stationary image points at the minimum and saddle points 

whereas when y≥1, we see only one image at one stationary point. This is heavily visible at 

higher values of dimensionless frequency because that is when the wave optics also agrees 

with geometric optics approximation and both the scenarios produce same amount of 

magnification.  

2.5 Phase of the Amplification Factor 

From the analytic wave equation that we have derived for point mass lens model and 

singular isothermal sphere lens model, we can plot the phase of the amplification factor as 

a function of the characteristic gravitational wave radiation parameter w using the 

following relation: 

                                                 𝜃𝐹(𝑤𝑎𝑣𝑒)(𝑤, 𝑦) = −𝑖 𝑙𝑛 [
𝐹(𝑤, 𝑦)

|𝐹(𝑤, 𝑦)|
]                                          (2.25) 
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When the dimensionless frequency w is greater than unity, ϴF(w,y) starts to approximately 

converge with the phase defined by geometric optics limit approximation. This can be 

described by the following equation: 

𝜃𝐹(𝑔𝑒𝑜)(𝑓) = arctan [
−|𝜇−|

1
2 cos(2𝜋𝑓Δ𝑡𝑑)

|𝜇+|
1
2 + |𝜇−|

1
2 sin(2𝜋𝑓Δ𝑡𝑑)

] (2.26) 

where |µ-|=0 when y is greater than unity for the singular isothermal sphere model. On 

analyzing the above equation, we can say that the phase of the amplification factor 

oscillates between − arctan[|𝜇−|1/2 ) |𝜇+|1/2⁄ ] and arctan[|𝜇−|1/2) |𝜇+|1/2⁄ ] with a time 

period of 2𝜋𝑓Δ𝑡𝑑 wherein the typical time delay is ∆td = 4ML.  

Figure 2.4 shows the phase of amplification factor plotted against the dimensionless 

frequency for a constant value of source offset position y. The same curve is plotted for 

three other values of y. The source position is fixed as 0.1, 0.25, 0.5 and 1.0. 

  

Figure 2.4: Phase of the amplification factor (ϴF(w) = -i ln[F(w)/|F(w)|]) of point mass lens 

model (Left) and singular isothermal sphere lens model (Right) with respect to varying 

values of dimensionless frequency (w=8πMLf) for a specific source offset values (i.e., y=0.1, 

0.25, 0.5, 1.0) 

The behavior of the phase is very similar to that of the magnitude of the amplification 

factor. The oscillatory wave behavior appears in both phase and magnitude of the 

magnification factor due to the two lens models under study in this research. We can see 

that, as the dimensionless frequency increases, the phase of the lensed waveform starts to 

obey geometric optics limit approximation.  

Figure 2.5 shows the phase of amplification factor plotted against the source offset position 

y for a constant value of dimensionless frequency w. The same curve is plotted for two 

other values of w. The dimensionless frequency is fixed as 20, 5 and 1.  
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Figure 2.5: Phase of the amplification factor (ϴF(w) = -i ln[F(w)/|F(w)|]) of point mass lens 

model (Left) and singular isothermal sphere lens model (Right) with respect to varying 

values of source offset for specific values of dimensionless frequency (w=8πMLf) (i.e., w=1, 

5, 20) 

From this plot, we can conclude that as the source offset position y increases, the ratio of µ- 

and µ+ decreases and thus, the amplitude and phase of the oscillatory behavior in the 

amplification factor ultimately decreases. 

2.6 Transition between geometric and wave optics limit 

In theory, we have already proved that wave optics limit holds good for lower values of 

dimensionless frequency w creating diffraction effects and geometric optics limit holds true 

for higher values of w creating interference effects. Since we deal with different lens mass 

and sampling frequency and both these values are directly proportional to the 

dimensionless frequency w, in real-time scenarios, both wave optics and geometric optics 

limit approximation should be used in the source signal to study the effects of gravitational 

lensing on gravitational waves to its proper potential.  

 

Figure 2.6: Transition between wave optics and geometric optics approximation for y=0.5 

at higher values of dimensionless frequency i.e., w>>1. This argument hold for various 

other values of y as well 
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Figure 2.7: 3D surface plots of |Fw(w,y)| (Left) and |Fgeo(w,y)| (Right) (both are 

dimensionless) as a function of dimensionless frequency and source position 

(dimensionless). Note that the plots are not scaled to logarithmic scale  
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In Figure 2.6, the resultant lens equation from both the limits is plotted (solid lines – wave 

optics limit, dashed lines – geometric optics limit), to find that value of w wherein the 

transition between the two limits happen unnoticeably. It is clear that for the values of w 

greater than unity, both the limits start to agree with the same absolute values of 

magnification factor. In this range, we choose an optimal value, say w=10. This value of w is 

chosen as the transition point between the two limits. Two different lens equation 

functions are defined and depending on the value of w, one of those function gets called 

and in the end an array of amplification factor values is created by joining appropriate 

values from the two limits. By this way, we can accommodate several different range of 

lens mass values for the compact point-mass like lens object. The entire analysis for BBH 

merger signal has been performed by using both the wave optics and geometric optics limit 

transitioning between these two limits depending on the w value.   

Three-dimensional surface plots for the co-ordinates w, y, F(w,y) and resulting 3D plot is 

shown in Figure 2.7. This plots also reapproves that both the limits agree on the same 

values for higher values of dimensionless frequency w. However, it is also important to note 

that, geometric optics limit on lower values of w gives wrong values while wave optics 

approximation on very high values of w is not defined.  
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Chapter 3  

Statistical and Computational Methods 

3.1 Bayesian methods of parameter estimation 

Bayesian inference is one of the mathematical methods which uses Bayes’ Theorem to 

estimate the probability of a hypothesis given that enough evidence and information on the 

input variables is available. Bayesian methods are especially very useful and important in 

dynamic analysis of the input data sequence in a particular hypothesis. From early 

mathematics, we know that, Bayes’ Theorem describes the probability of an event using 

the following relation: 

𝑃(𝑥|data, 𝑀) =
𝑃(data|𝑥, 𝑀)𝑃(𝑥|𝑀)

𝑃(data|𝑀)
(3.1) 

Bayes’ Theorem has its major application on Bayesian Inference. Bayes’ Theorem relates 

the degree of belief in a parameter before and after considering the amount of evidence 

available to the support the parameter. In the above equation (3.1), P(x|M) is the prior or 

initial knowledge about the random variable x, P(x|data,M) is the posterior on the 

parameter x after obtaining the information that the model M and data is valid and true, 

the term P(data|x,M) is the likelihood and P(data|M) is the evidence that the model M 

provides for the data.  

This paradigm of parameter estimation follows modelling the distribution of known and 

unknown (random) variables, defining the prior distribution on those random variables and 

updating our posteriors based on the prior, likelihood and evidences.  

3.1.1 Bayes Factor and Bayesian evidence  

We use Bayes Factor as an alternate to classical frequentist hypothesis test. Bayes Factor 

helps in providing support for one statistical model over the other. Note that, Bayes factor or 

odds ratio does not say whether the model is true or not.  

𝐾 =
𝑃(𝐷|𝑀1)

𝑃(𝐷|𝑀2)
(3.2) 

where P(D|M1) is the posterior for the data given that the model M1 is true and P(D|M2) is 

the posterior for the data given that the model M2 is true. If the Bayes Factor value is greater 

than 1, then model 1 is favored. If the Bayes Factor value is less than 1, then model 2 is 

favored.  

Bayesian evidence acts as a normalization factor in parameter estimation problems. It is also 
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called marginal likelihood. The ratio of these evidences gives the Bayes Factor. In parameter 

estimation problems, evidence play a small role of normalization while in model selection 

problems, it plays a major role wherein ratio of evidences gives the Bayes Factor which in 

turn says which model is favorable. 

3.2 Nested Sampling 

In this research, we use a computational approach called nested sampling algorithm to the 

lensed waveform models for parameter estimation. This algorithm provides posterior 

samples and estimates of Bayesian evidence. This algorithm performs better than MCMC 

parameter estimation for multi-modal distributions because there is no need to specify any 

proposal density here.  

Nested sampling plots posterior distribution by having a set of samples specified within the 

prior range called ‘live points’ and iteratively update them with a condition that the new 

samples should have a greater likelihood than the older ones. In standard nested sampling, 

the amount of shrink in the prior range remaining is the same in each step. We use dynamic 

nested sampling in this work. Here, we dynamically vary the number of live points in order 

to increase the accuracy of calculation for some posterior samples. This is very effective 

than standard nested sampling because in standard one, most of the computational 

execution time goes in estimating all the posterior samples with little weight that makes no 

contribution to the parameter estimation calculations. (Higson 2019) 

3.2.1 Dynesty – Nested Sampling Algorithm 

In this research, we use dynesty: a dynamic nested sampling algorithm (Speagle 2018) for 

estimating the posteriors and evidences, also known in Bayesian analysis as marginal 

likelihoods.  Dynamic nested sampling takes the advantage of parameter estimation of 

posteriors like in the famous Markov Chain Monte Carlo methods (popularly referred as 

MCMC algorithm) along with focusing on the aims of nested sampling like estimating the 

evidences and producing samples in multi-dimensional distributions.  

3.3 Bilby -  Bayesian Inference Library 

Bilby is a user-friendly Bayesian statistics library (Ashton 2019) that is widely used in the 

field of gravitational wave astrophysics because in GW astronomy, the signal and source’ 

physical properties are estimated predominantly using Bayesian methods of parameter 

estimation. This python module provides an extremely convenient parameter estimation 

infrastructure that performs accurate sampling of input data in the recovery model.  

This research uses Bilby along with Lalsuite (LALSimulation) and gwpy packages in Jupyter 

Notebook (Python) for modelling the source signal, adding lensing parameters to it and 

estimating the resulting parameters. One of the major advantage of using Bilby for our 

problem statement is that it allows adding interferometer noises to the modelled source 

signal and thus we will be able to simulate our results at a practical level of signal -to-noise-

ratio and produce results that are closer to the ones we obtain from the observation runs 

of existing LIGO/VIRGO detectors.  
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Bilby is one of the best and robust interfaces to perform parameter estimation on several 

lensing and GW source parameters. Here, we access LIGO data using the GWPy module. 

Bilby also allows defining several different types of source functions, likelihood and priors 

along with prior constraints and plot corner plots generated from the samples produced 

using the nested sampling algorithm. In the next section, we will look in detail about the 

sampler that we use in this study. 

3.4 LALSuite – LIGO gravitational wave analysis algorithm 

LALSuite (stands for LIGO Scientific Collaboration (LSC) Algorithm Library Suite in gravity 

research) python package was initially designed to search for gravitational wave signal 

amidst the noises in the LIGO and VIRGO ground-based interferometers in each of its 

observing runs and characterize several different astronomical signals within the series of 

data from the interferometers in time-domain. This is an open source public domain 

package available for Linux and macOS. It supports run on Colab – Google Colaboratory – 

which allows writing and executing jupyter notebooks in browser windows with free access 

to its GPU card.  

This research will use LALsuite for source-modelling binary black hole merger gravitational 

wave signals. (LSC 2018) This will enable simulating gravitational wave signals (Varma 2016) 

for a defined set of source parameters and sky positions based on LIGO and VIRGO existing 

observing run data stream. This package has a collection of data analysis interfaces with the 

LIGO collaboration which enables applying several different statistical methods on such 

data and deriving conclusions on the numerical properties and correlation between random 

variables present in the data. 

LALSimulation is very useful in creating the gravitation waveforms as per the requirement 

in any scientific problem statement and generating real time noise waves along with the 

source data. Most of the modules especially the ones used in this research have straight-

forward syntax and are easy to interpret and implement.  
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Chapter 4  

Source Signal 

From this chapter, we will mainly focus on the gravitational lensing of gravitational wave 

events with the lens object having a mass distribution similar to point-mass like 

astrophysical objects such as black holes and compact stars in distant galaxies.   We will 

consider model two different types of source signals in frequency domain, attach the 

lensing model to it and generate a lensed waveform which we later recover and estimate 

several different lensing and input signal parameters.  

Firstly, we will generate a sine-gaussian source model in the frequency domain and in the 

second scenario, we will generate a gravitational wave signal from a binary black hole 

merger event. 

4.1 Sine-Gaussian Signal  

Firstly, a sine-gaussian signal in the frequency domain is defined outside the scope of Bilby 

for a particular frequency f0 and amplitude A. A sine-gaussian signal is nothing but a normal 

sine wave signal modulated by a Gaussian wave envelope and its characteristic parameter 

is the central frequency of the signal. The function is declared in such a way that it returns a 

structure of plus and cross polarizations of sine-gaussian wave taking amplitude and 

frequency as the major arguments. The plus and cross polarizations of the function are 

defined as follows: 

ℎ+
𝑆𝐺(𝑓) =  

1

2
𝐴√𝜋𝜏 exp (−(𝜋𝜏(𝑓 − 𝑓0))

2
+ 𝑖𝜙) (4.1) 

ℎ×
𝑆𝐺(𝑓) =  ℎ+

𝑆𝐺(𝑓) exp (𝑖
𝜋

2
) (4.2) 

It is important to note that we define the sine-gaussian signal in frequency domain because 

our lens equation varies as a function of dimensionless frequency w which is directly 

proportional to the frequency of the source signal under study. Now, we use Bilby to model 

the sine-gaussian signal by injecting appropriate values for A, f0, τ and φ and defining the 

sine-gaussian function that returns plus and cross polarization as the frequency domain 

source model. This will generate a waveform that can further be passed on to the LIGO 

interferometers to create a simulated noise form to be added to the sine-gaussian signal.  

The sine gaussian signal can then be lensed by multiplying the point mass lens model’s 

amplification factor equation with the plus and cross polarization of the sine-gaussian signal 

as follows: 

ℎ+
𝑆𝐺 𝑙𝑒𝑛𝑠𝑒𝑑(𝑓) =  ℎ+

𝑆𝐺(𝑓)  ×  𝐹(𝑤 = 8𝜋𝑀𝐿𝑓, 𝑦 = 0.1) (4.3) 

ℎ×
𝑆𝐺 𝑙𝑒𝑛𝑠𝑒𝑑(𝑓) =  ℎ×

𝑆𝐺(𝑓)  ×  𝐹(𝑤 = 8𝜋𝑀𝐿𝑓, 𝑦 = 0.1) (4.4) 
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Figure 4.1: Frequency domain sine-gaussian unlensed signal at a frequency of f0=50Hz 

(Top), Frequency domain sine-gaussian lensed signal with y=0.1 and M=0.02 (scaled to 

time) (Middle -One), Time domain sine-gaussian unlensed signal (Middle -Two), Time 

domain sine-gaussian lensed signal (Bottom) Here y-axis is in dimensionless. 
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This will generate lensed sine-gaussian signal in frequency domain. These can be visualized 

back in time domain by performing one-dimensional Inverse Fast Fourier Transform of the 

real input (IRFFT) as follows: 

𝐻+
𝑆𝐺 𝑙𝑒𝑛𝑠𝑒𝑑(𝑡) =  √2𝑓𝑠𝑇𝑜𝑏𝑠  irfft(ℎ+

𝑆𝐺 𝑙𝑒𝑛𝑠𝑒𝑑(𝑓)) (4.5) 

𝐻×
𝑆𝐺 𝑙𝑒𝑛𝑠𝑒𝑑(𝑡) =  √2𝑓𝑠𝑇𝑜𝑏𝑠 irfft(ℎ×

𝑆𝐺 𝑙𝑒𝑛𝑠𝑒𝑑(𝑓)) (4.6) 

where fs and Tobs are the sampling frequency and duration of the signal respectively.  

Figure 4.1 shows the time domain and frequency domain sine-gaussian signal along with 

the interferometer noises from LIGO added before and after gravitational lensing from a 

mass that follows point mass distribution model.  

Table 4.1 tabulates the properties of the sine-gaussian signal that is modelled to study 

point mass lens model and gravitational lensing effects produced by it.  

 

 

  

 

 

 
 
 
 
 
 
 

Table 4.1: Tabulation of lensing and signal parameters along with lensed and unlensed SNR 
values used for the study 
 
We can see clearly from the table that the SNR values have improved for unlensed signal 
because it has been magnified due to the point mass lens model.  
 

4.2 Binary Black Hole merger Gravitational wave signal  

In order to generate a source signal that models a binary black hole (further referred as BBH) 

merger GW event (Broadhurst 2019), just like the case of sine-gaussian signal, we define a 

function outside the scope of Bilby (say, gen_bbh). This function will take parameters of 

binary black hole mergers as arguments such as individual masses of the black holes, their 

spins, their sky positions, luminosity distances, inclination angle with the observer, 

geocentric time etc.  

Parameters Sine-Gaussian 
signal 

Point mass lens  Signal-to-Noise-Ratio 

   Optimal SNR Matched Filter 
SNR 

LIGO-Hanford 

A 
f0 

τ 
φ 

5 x 10-22 
50 Hz 
0.02 

0 

 9.83 11.34+i0.61 

y 
M 

 0.1 

0.02 s (~4000 M☉) 

28.62 29.10-i0.10 
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Figure 4.2: Frequency domain BBH merger GW unlensed signal at a frequency of f0=50Hz 

(Top), Frequency domain BBH merger GW lensed signal with y=0.1 and M=4000 M☉ 

(Middle -One), Time domain BBH merger GW unlensed signal (Middle -Two), Time domain 

BBH merger GW lensed signal (Bottom) Here y-axis is dimensionless. 
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Inside the function, we also use sampling frequency and observation time to generate the 

BBH merger signal. A special function defined in LALsuite library called 

SimInspiralChooseFDWaveform is used to generate the frequency domain waveform of two 

black holes merging and producing compact binary coalescence gravitational wave signal. 

This function takes arguments such as mass of the two black holes, their sky positions, 

distance between the observer and the source (in this case, interferometer and the two 

black holes), inclination angle between the observer and the merging black holes, angle 

between the two black holes, minimum frequency of observation, maximum frequency of 

observation which according to Nyquist-Shannon sampling theorem should be lesser than 

or equal to fs/2 where fs is the sampling frequency that will be used by Bilby parameter 

estimator.  

This pre-defined function will return a structure of plus and cross polarization strain data of 

the binary black hole merger GW event. (Abbott 2016) This will generate a waveform that 

can further be passed on to the LIGO interferometers to create a simulated noise form to 

be added to the BBH merger signal.  

Parameters BBH merger signal Point mass lens  Signal-to-Noise-Ratio 
 

   Optimal 
SNR 

Matched Filter 
SNR 

LIGO-Livingston 

M1 

M2 

DL 

ϴjn 

φ 

36.0 M☉ 

29.0 M☉ 

500 Mpc 

150o 

0o 

 12.10 11.70+i0.49 

y 

ML 

 0.1 

4000 M☉ 

28.91 27.24+i0.51 

Table 4.2: Tabulation of lensing and GW signal parameters along with lensed and unlensed 
SNR values used for the study 
 

Figure 4.2 shows the time domain and frequency domain BBH merger GW signal along with 

the interferometer noises from LIGO-Livingston added before and after gravitational 

lensing from a mass that follows point mass distribution model. Table 4.2 tabulates the 

properties of the GW signal from the two merging black holes that is modelled to study 

point mass lens model and gravitational lensing effects produced by it. We can see clearly 

from the table that the SNR values have improved for unlensed signal because it has been 

magnified due to the point mass lens model.  
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Chapter 5 

Results & Analysis 

In this chapter, we will present the results obtained from parameter estimation of signal and 

lensing parameters for both sine-gaussian and BBH merger models. We will analyze how each 

signal parameter is affected by the lensing parameters and what effect does the point mass lens 

object between the source and the observer produce on the signal.  

In the latter part of this chapter, we will focus more on strong and weak lensing, transition 

between wave and geometric optics limit, what happens when we estimate the signal at the 

recovery by not considering the lensing effect that has been created on the source signal 

side. Several interpretations based on each module is briefed throughout this chapter under 

discussions. 

5.1  Source signal parameters before lensing by the Point-mass object 

5.1.1 Sine-Gaussian signal  

While recovering the signal for parameter estimation, we perform dynesty – a dynamic 

nested sampling algorithm to produce multi-dimensional samples drawn from the posterior 

distribution on the parameters based on the prior range defined for the parameter. The 

dynesty sampler runs until the remaining logarithmic evidence (dlogz) estimates to a value 

below 0.1 (default). In this source signal, 7983 samples are generated and corner plot and 

histogram for the input parameters amplitude A and central frequency f0 is produced as 

shown in Figure 5.1. In this model, we get a loge evidence of -240.050±0.085 and loge Bayes 

factor of 112.600±0.085. 

Parameters Prior Ranges and functions Posterior 
(99.7% credible interval) 

 Sine-Gaussian signal Sine-Gaussian signal 

A 
f0 (Hz) 

τ 
φ 

10-23- 10-21 (Loge Uniform) 

40 – 60 (Uniform) 

0.02 

0 

5 −2
+2 × 10−22 

49.15−3.10
+3.07 

- 

- 

Table 5.1: Prior and posterior value of the unlensed sine-gaussian signal parameters 

A tabulation of prior ranges and 99.7% credible interval with posterior values with highest 

likelihood is presented in Table 5.1. The quoted credible interval is consistent with the true 

injected parameters. The width of the posterior gives you the precision of the 

measurement and consistency indicates that things didn’t go wrong.  
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Figure 5.1: Corner plots for unlensed sine-gaussian signal parameters A and f0 in Hz 

From Figure 5.1 we can say that the amplitude of the sine-gaussian signal and the central 

frequency has a slight negative correlation between each other, and their histograms show 

the distribution of samples within approximately three standard deviation values.  

5.1.2 BBH merger signal 

We repeat the same procedure as we did for sine-gaussian curve, for the binary black hole 

merging gravitational wave signal. In this source signal, 16967 samples are generated and 

corner plot and histogram for the input parameters two individual masses of the black hole 

m1 & m2 and luminosity distance dL is produced as shown in Figure 5.2. In this model, we 

get a loge evidence of -53.141±0.158 and loge Bayes factor of 911.873±0.158.  

It can be seen clearly from the corner plots generated by Bilby that both the masses of the 

black holes doesn’t depend on the luminosity distance and thus, they are not correlated 

while the two masses have a strong negative correlation which means that if m1 increases, 

m2 decreases. This is predominantly because of the constraint we set of chirp mass and 

mass ratio of the two black holes. From basic knowledge on merging black holes, we know 

that the chirp mass is the resulting reduced mass of the compact binary black hole system 

after the merger and ringdown stage with the loss of mass explained as the result of energy 

loss by which the system emits gravitational waves that we measure using interferometers. 

Chirp mass of a two-body system is given by 

ℳ = [
(𝑚1𝑚2)

3
5

(𝑚1 + 𝑚2)
1
5

] (5.1) 

when the component masses are equal to m1 and m2. Since chirp mass determines how 

much energy is lost in the process of generating the gravitational wave, a constraint on this 

parameter is essential.  
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Figure 5.2: Corner plots for unlensed BBH signal parameters – two masses in M☉ and 

luminosity distance in Mpc 

The mass ratio is the ratio between the two masses, and we retain a constraint that it 

should always be lesser than unity because the mass of one black hole should never exceed 

the other though they have overlapping priors. The value of priors on each parameter and 

constraint range on chirp mass and mass ratio is tabulated in Table 5.2. This table also 

shows the posterior estimate and 99.7% confidence interval range for each parameter 

estimated in the corner plot.  

Parameters Prior Ranges and functions Posterior 
(99.7% credible interval) 

 BBH merger signal BBH merger signal 

m1 (M☉) 

m2 (M☉) 

DL (Mpc) 

ϴjn 

φ 

0.0-50.0 – Uniform 

0.0-50.0- Uniform  

20-2000 – Power Law (α=2) 

150o 

0o 

34.35−3.93
+4.68 

30.41−4.05
+3.63 

487.22−31.89
+35.28 

- 

- 

Constraints: 

Chirp Mass (M☉) 

Mass Ratio 

 

0.0-50.0  

0.1-1.0 

 

- 

- 

Table 5.2: Prior and posterior value of the unlensed BBH signal parameters 
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5.2  Source signal parameters after lensing by the Point-mass object 

5.2.1 Sine-Gaussian signal  

Now, we perform recovery of parameters for lensed sine-gaussian signal by sampling over 

the prior range of values for source signal parameters and lensing parameters which is 

tabulated in Table 5.3. In this lensed source signal, 14802 samples are generated, and we 

get a loge evidence of -244.827±0.142 and loge Bayes factor of 905.846±0.142. The 

posterior values obtained as a result of dynamic nested sampling of the data over the prior 

range along with three standard deviation range around the maximum likelihood estimate 

of the parameter is also tabulated in Table 5.3.  

 

Figure 5.3: Corner plots for lensed sine-gaussian signal parameters A & f0 (Hz) and lensing 

parameters y (dimensionless) & M (in M☉) 
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Parameters Prior Ranges and functions Posterior 
(99.7% credible interval) 

 

 

Sine-
Gaussian 

signal 

Point mass lens  Sine-Gaussian signal Point 
mass lens  

A 
f0 (Hz) 

τ 
φ 

10-23- 10-21 (Loge Uniform 

40 – 60 (Uniform) 

             0.02 

                0 

4.75 −1.5
+2.8 × 10−22 

50.17−1.41
+1.38 

- 

- 

 

y 

ML (s) 

0.01-0.3 - Uniform 

0.01 – 0.05 - Uniform  

(2000 - 10000 M☉) 

 0.12−0.09
+0.09 

0.02−0.02
+0.03 

 

Table 5.3: Prior and posterior value of the lensed sine-gaussian signal and lensing 

parameters 

For the sine-gaussian lensed signal, we assign delta function priors on τ and φ while 

estimate amplitude A and central frequency f0 over a definite prior range that 

logarithmically uniform in A and uniform over f0. Similarly, we set uniform priors over a 

definite range for the lensing parameters as well. The resulting corner plots and histogram 

for each of the lensing and signal parameters is shown in Figure 5.3. 

We can see from Figure 5.3 that the slight negative correlation we observed between 

amplitude and frequency in unlensed signal has disappeared in lensed signal case and the 

99.7% credible region has reduced in range for frequency which could be the reason that in 

lensed sine gaussian signal, there is no correlation between the amplitude and frequency 

i.e., as the amplitude varies over its prior range, frequency remains approximately the 

same. We also observe that there is zero correlation between the central frequency and 

lensing parameters e.g., source offset y and lens mass (time-scaled) M i.e., as the value of y 

and M varies (increases or decreases), the central frequency of the sine-gaussian signal 

remains unchanged.  

However, the amplitude of the sine-gaussian signal is heavily correlated with the lensing 

parameters. There exists a perfect positive correlation between the amplitude of the 

source signal and source position y. This can be interpreted as when the source is closer to 

being in-line with the lens object, the amplitude of the source signal increases which is an 

expected behavior. From the lens equation and plots made for amplification factor, we 

know that the magnification is more when the source offset is less. 

We observe a strong negative correlation between the amplitude of the sine-gaussian 

signal and lens mass (scaled to time – multiplied by a factor of G/c3). This leads to an 

inference that when the mass of the compact lens object (point-like mass) is more, the 

amplitude of the source signal decreases which means that the magnification due to 

lensing is less in this case. Note that, all these models are produced and evaluated in wave 
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optics limit only. 

5.2.2 BBH merger signal 

Now, we perform recovery of parameters for lensed binary black hole signal by sampling 

over the prior range of values for GW signal parameters and lensing parameters which is 

tabulated in Table 5.4. In this lensed GW source signal, 13875 samples are generated, and 

we get a loge evidence of -137.158±0.136 and loge Bayes factor of 260.839±0.136. The 

posterior values obtained as a result of dynamic nested sampling of the data over the prior 

range along with three standard deviation range around the maximum likelihood estimate 

of the random variable is also tabulated in Table 5.4.  

Parameters Prior Ranges and functions Posterior 
(99.7% credible interval) 

 BBH merger 
signal 

Point mass lens  BBH merger 
signal 

Point mass lens  

m1 (M☉) 

m2 (M☉) 

DL (Mpc) 

ϴjn 

Φ 

0.0-50.0 - Uniform  

0.0-50.0 - Uniform 

20-2000 - Power Law (α=2) 

            150o 

              0o 

34.66−4.05
+2.76 

30.13−2.34
+3.69 

486.76−120.84
+163.95 

- 

- 

 

Constraints: 

Chirp Mass (M☉) 

Mass Ratio 

 

0.0-50.0 - Uniform 

0.1-1.0 - Uniform 

 

- 

- 

 

y 

ML (M☉) 

0.01-0.3 - Uniform 

2000-6000 - Uniform 

 0.11−0.06
+0.06 

3748.21−1944.18
+2847.81 

Table 5.4: Prior and posterior value of the lensed BBH signal and lensing parameters 

From the table, we also see that the prior range on luminosity distance has increased by 

four to five folds. This increase in standard deviation of luminosity distance can be 

attributed to the increase in the magnitude or strength of the gravitational wave signal 

because of the magnification provided by the point mass lens model. The resulting corner 

plots and histogram for each of the lensing and signal parameters is shown in Figure 5.4. 

Just like the corner plots obtained from the model of unlensed BBH merger event where 

the two masses of the compact black holes were independent of the distance parameter, 

they are also uncorrelated with the lensing parameters: the source offset y and lens mass 

M whereas the two black hole masses are negatively correlated similar to the unlensed 

signal scenario.  

Like the amplitude variable in sine-gaussian lensed waveform, the luminosity distance dL is 

heavily correlated with the lensing parameters y and M. This could be a possible 

explanation for the histogram of distance parameter to be spread out more than the 

unlensed waveform scenario. 
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Figure 5.4: Corner plots for lensed BBH signal parameters m1, m2 (in M☉) & dL(in Mpc) and 

lensing parameters y (dimensionless) & M (in M☉) 

Luminosity distance or the distance between the source and the observer has strong 

positive correlation with the lens object’s mass while it has an extremely perfect negative 

correlation with the source position y. This is exactly to opposite to what we saw in the case 

of amplitude in sine-gaussian waveform. This is because, as the magnitude of amplification 

by lensing increases because of a decrease in source offset or increase in the mass of the 

point-like lens object, the distance from where the signal arrived can be assumed far 

because strong lensing could occur only when the source is distant because the probability 

of finding a heavy mass compact lens object is more in that case.  

Like lensed sine-gaussian waveform, source position and lens mass take strong negative 

correlation as it is expected to be from the lens equation that describes the amplification 

factor as a function of dimensionless frequency and source position. From the corner plots, 

we can also observe that all the injection parameters lie within one standard deviation of 
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the posterior (64% confidence interval) that is estimated using nested sampling. This proves 

that the sampling has been performed correctly and the parameter estimation accurately 

matches with the source signal that we modelled. 

5.3 Strong and weak gravitational lensing 

Strong and weak lensing of gravitational waves are defined based on the values of source 

position and lens mass. When the lens mass is high (eg., mass of an SMBH) and the source 

position factor is low (~0.1), almost in line with the lens, then the resulting amplification 

due to lensing effects is very large and this results in strong lensing of the gravitational 

wave, wherein the SNR of the signal increases heavily and amplitude of the signal increases 

by several folds. In case of strong lensing, the dependency of source parameters on lens’ 

random variables will be more and accurate. 

When the lens mass is less (~100 M☉) (compactness reduces), and the source offset is more 

(~3.0), then the resulting lensing effect will be very less, and the phenomena can be 

described as weak lensing. In case of weak lensing, the dependency of source parameters 

on lens’ random variables will be less and not very precise. 

5.4 Sampling without considering the lens effect 

 

Figure 5.5: Corner plots for BBH merger GW signal which is lensed in the model, but the 

recovery samples ignore the lensing effects and estimate source signal parameters. m1 and 

m2 in M☉ and dL in Mpc 

Let us consider the case where we create a strongly lensed signal with the properties as in 
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Table 5.4. During the recovery of the GW signal using dynesty sampler, we assume that 

there is no lensing, which is what LIGO and VIRGO does by default for any incoming signals 

over its three observing runs. Since we assume there is no lensing, we set uniform priors on 

the two black hole masses and the luminosity distance or distance between the source and 

the observer and the remaining parameters take delta priors equal to their injection values. 

For this GW source signal, 23002 samples are generated, and we get a loge evidence of -

1443.188±0.191 and loge Bayes factor of 1741.562±0.191. 

The resulting corner plots when we assume that there is no lensing while sampling the 

input signal is shown in Figure 5.5. We can see from the figure that, just like the unlensed 

gravitational wave signal from binary black hole system, there is no correlation between 

the mass of the black holes and luminosity distance while there exists a negative 

correlation between the two masses of the black holes under study.  

One important conclusion to note is that the posterior values of m1, m2 and dL are not equal 

to the injection values. There is huge offset in each value because we assume that there is 

no lensing. Primary black hole mass shows an increase in value than its injection value while 

secondary mass shows a decrease in its value than its original value. Though there existed 

no correlation between source masses and the lensing parameters, we observe that 

ignoring lens effects make us predict the wrong values of source masses. The luminosity 

distance value has dropped from 500 Mpc to ~250 Mpc. This offset can be easily explained 

because of the magnification in the signal due to lensing, the sampler assumes that it is 

close-by than its original distance because we ignore the fact that the signal is being lensed. 
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Chapter 6 

Conclusion 

6.1  Summary 

This research discusses the gravitational lensing effects on gravitational wave signals from 

binary black hole merger system. In the process of working towards estimating the 

relationship between different parameters involved in a lensed gravitational wave signal, 

we make obtain few other results. These results are summarized as follows: 

• A mathematical form of lens equation that describes the point mass lens model and 

singular isothermal sphere (SIS) lens model system is presented analytically. This 

analytic expression is used throughout the research in both geometric and wave 

optics limit. 

• Magnitude and phase of the amplification factor for varying values of dimensionless 

frequency and source position is plotted and several inferences are made based on 

the oscillations produced by the amplification factor at higher values of w. 

• A sine-gaussian source signal is produced for a certain frequency and point-mass 

lens model is attached to it. From the posterior distribution of the parameters 

several conclusions are made based on the source and lens’ properties. 

• Similarly, a merging binary black hole GW signal is produced, and the point-mass 

lens model is attached to it. The signal and lensing parameters are estimated using 

nested sampling and the resulting corner plot shows the correlation between the 

different parameters involved in a lensed binary black hole system. 

• A transition point between wave and geometric optics limit is found for a lensing 

system where the source position is ~0.5. Using this value, we vary lens mass 

between a high range and use both the limits to advantage and create a lensed BBH 

model. 

• Strong and weak gravitational lensing based on varying the lens mass and source 

position is discussed and analyzed. 

• Finally, the key results, wherein we recover the lensed BBH signal by assuming that 

there is no lensing and see huge offset between the posterior obtained and the 

actual injected values. 
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6.2  Conclusion 

The objective of this research is to study how various source signal parameters get affected 

by the lensing parameters due to gravitational lensing of the gravitational wave signal 

under study. In this report, we quantitatively assess how the amplification factor is affected 

for varying values of source position and dimensionless frequency that directly depends on 

frequency of GW radiation and lens mass (time-scaled). We model a sine-gaussian signal for 

a center frequency and attach the lens equation to it. In this case, we observe that the 

amplitude of the signal is heavily correlated with lensing parameters whereas the central 

frequency remains unaffected by both the lens parameters and the other signal parameter. 

As a key part of our research, we model a binary black hole merger system that produces 

gravitational wave signal and attach point-mass lens equation to it. When we estimate the 

parameters involved in this model, we see no correlation between the lens mass and the 

remaining parameters in the system while strong positive correlation between the lens 

mass and luminosity distance and strong negative correlation between source position and 

distance between the observer and the source. We also study that optimal transition point 

in dimensionless frequency that allows smooth transit between wave and geometric optics 

limit which lies around 10.0. LIGO/VIRGO interferometers never account for lensing in the 

gravitational wave signal during sampling. Thus, we sample a lensed signal by ignoring the 

lensing effect to see what effect it has on the input parameters. We find huge offset in 

black hole masses and luminosity difference as a result of ignoring the lensing effect 

produced by the model. Thus, we can conclude that, gravitational lensing effects should be 

considered while observing for gravitational waves with high probability of lensing in the 

universe using future ground and space-based interferometers for accurate estimation of 

the physical properties of the gravitational wave sources.   

6.3  Future scope of the research 

This research can be repeated for the case of singular isothermal sphere lens model which 

produces higher magnification than the point-mass lens model. However, since the analytic 

form of SIS lens equation still consist of summation or integral expression, it will slow down 

the likelihood evaluation to be more than fraction of seconds in Bilby. This problem can be 

overcome by pre-estimating the lens equation for several different values of w and y and 

interpolating them. The resulting table of values can be called while inserting the lens 

model to the GW signal. Several other parameters like sky positions, inclination etc. can 

also be estimated from a lensed GW signal to see how it gets affected due to the attached 

lensing model. Strong and weak lensing process can be analyzed by varying the lensing 

parameters over a certain range. The lens model can also be attached to a real-time GW 

signal to see how the lensed form of such signals would look like and estimate the 

probability of those signals being lensed. We can find out how likely it is that a source 

would be lensed in the first place. We can determine the lensing parameter space that 

could be detectable in real-time scenario. We can convert the source offset factor y in real 

time values and estimate several distance parameters involved like distance between 

source and lens, lens and observer etc. A theoretical analysis of the same has been 

presented in Appendix C.  
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Appendices 

Appendix A 

As explained in the main text, we know that the maximum value of amplification factor (or 

precisely, maximum amplification due to gravitational lensing of gravitational waves in 

wave optics limit) can occur only when the source offset is less or tends to zero. Thus, 

deriving the value of the amplification factor at y=0 can prove to be useful. 

A.1 Derivation of equation (2.15)  

Amplification factor of Point mass lens at y=0 

We know that, equation (2.14) gives the value of amplification factor for any specific value 

of dimensionless frequency and source position for a point mass lens model. This is the lens 

equation for the model. 

𝐹𝑤(𝑤, 𝑦) = exp [
𝑖

2
𝑤(𝑦2 + log (

𝑤

2
)]  exp (

𝜋

4
𝑤)  Γ (1 −

𝑖

2
𝑤)  𝐹1 1 (1 −

𝑖

2
𝑤, 1; −

𝑖

2
𝑤𝑦2) 

(𝐴. 1) 

Using the mathematical identity |Γ(1 + ai)|2 =  𝑎𝜋/sinh (𝑎𝜋) from Abramowitz and 

Stegun 1972, we can say that 

|Γ (1 −
𝑤

2
𝑖)|

2

=  

−𝑤
2 𝜋

exp (
−𝑤𝜋

2 ) − exp (
𝑤𝜋
2 )

2

(𝐴. 2)
 

=  
𝑤𝜋

1 − exp(−𝑤𝜋)
exp (−

−𝑤𝜋

2
) (𝐴. 3) 

Inserting this equation in (A.1) and taking the absolute value on both sides, we get, 

|𝐹𝑤(𝑤, 𝑦)| =  |exp (
𝜋

4
𝑤) √

𝑤𝜋

1 − exp(−𝑤𝜋)
exp (−

−𝑤𝜋

4
)  𝐹1 1 (1 −

𝑖

2
𝑤, 1; −

𝑖

2
𝑤𝑦2)| 

(𝐴. 4) 

Now after setting the source position y=0 and using the following identity as in Abramowitz 

and Stegun 1972, 

lim
𝑐→0

 𝐹1 1(𝑎, 𝑏; 𝑐) = 1 (𝐴. 5) 

we get the final equation (2.15), as follows: 
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𝐹𝑤𝑎𝑣𝑒;𝑚𝑎𝑥(𝑤, 𝑦 = 0) =  √
𝜋𝑤

1 − exp(−𝜋𝑤)
 (𝐴. 6) 

We know that, in geometric optics limit, wherein dimensionless frequency is higher than 

unity, this equation reduces to the following form: 

𝐹𝑔𝑒𝑜;𝑚𝑎𝑥(𝑤, 𝑦 = 0) =  √𝜋𝑤 (𝐴. 7) 

Appendix B 

B.1 Derivation of equation (2.22)  

Amplification factor of Singular Isothermal Sphere lens at y=0 

We know that, equation (2.14) gives the value of amplification factor for any specific value 

of dimensionless frequency and source position for a SIS lens model. This is the lens 

equation for the model. 

𝐹𝑤(𝑤, 𝑦) = exp [
𝑖

2
𝑤𝑦2] ∑ {2𝑤 exp (𝑖

3𝜋
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∞
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(𝐵. 1) 

When we solve for source position equal to zero, we get the following integral form of the 

lens equation: 

𝐹(𝑤, 0) =  −𝑖𝑤 ∫ 𝑥 exp (𝑖𝑤 [
1

2
𝑥2 − 𝑥]) 𝑑𝑥

∞

0

 (𝐵. 2)

= −𝑤 ∫ 𝑡 exp 
∞

0

(𝑤
1

2
𝑡2 − 𝑖

1
2𝑤𝑡) 𝑑𝑡 

 

(Note that in the second step we have used change of variables method on the integral 

calculus where we use the new variable t as √𝑖𝑥. 

From Matsunaga 2006, we can reduce (B.2) into a simple form as follows: 

𝐹(𝑤, 0) = exp (
𝑖

4
𝑤) 𝐷−2 (exp

𝑖3𝜋

4
√𝑤) (𝐵. 3) 

where D-2 is the parabolic cylinder function that has the following definition: 

𝐷−2(𝑥) =  √
𝜋

2
 exp (

𝑥2

4
) (1 − Erf (

𝑥

√2
)) − exp (

−𝑥2

4
) (𝐵. 4) 

Substituting (B.4) in (B.3), we get the maximum amplification factor value at y=0 as (2.22) 
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Appendix C 

C.1 Source position parameter y in terms of physical lens parameter values 

 We know that the parameters x and y are dimensionless which means that since Dd and Ds 

are of same units (parsecs), η and ξ are of same units as well. 

The equation for ξ is as follows: 

𝜉 =  √
4𝑀𝐷𝑑𝐷𝑑𝑠

𝐷𝑠
 (𝐶. 1) 

Therefore, when distances are expressed in units of time (by dividing them by the speed of 

light) and masses are assumed to be in units of time as well (by multiplying them by G/c3) 

then, ξ is also in units of time. This implies that η is in units of time (because it’s a distance 

vector). 

To get the specific distance ξ representing the perpendicular source distance from the line 

passing through the detector and the lens, then we get, 

𝜂 =  
𝑦𝜉𝐷𝑠

𝐷𝐿
= 𝑦√

4𝑀𝐷𝑠𝐷𝑑𝑠

𝐷𝑑

(𝐶. 2) 

Thus, in order to convert y back to physical parameter space, we can consider distance 

between lens and observer as a lensing parameter while Ds will simply be the luminosity 

distance parameter that we’re already estimating as in Section 5.2.2 and Dds will be the 

difference between Dd and Ds. Note that the lens mass, all the distances and η should be in 

units of time and x and y are dimensionless while using the equation (C.2). 

 


